These video lectures relate to edition 1 of the book, meaning that they will be differently structured and differ in content details. The lectures are an introduction to the software-based analysis of digital music signals (Music Information Retrieval) for students with existing background in audio processing. It covers the basic approaches for audio content analysis and provides students with the necessary algorithmic background to approach this class of problems. Topics include, for example, pitch tracking, beat tracking, audio feature extraction, and genre classification.
prerequisites
Prior coursework in signal processing is expected – the fundamentals module of the class will introduce concepts in detail. Familiarity with and access to Matlab or Octave is required.
learning outcomes
After successful completion of this class, the students will be able to
- summarize and explain baseline approaches to typical tasks in Music Information Retrieval
- describe and apply evaluation methods and metrics for audio content analysis systems,
- implement audio content analysis systems in Matlab.
course outline
- Module 0.0: Introduction to Online Class
chapter 1: introduction
- Module 1.0: Introduction to Music Information Retrieval
chapter 2: fundamentals
- Module 2.0: Fundamentals – Signals
- Module 2.1: Fundamentals – Sampling
- Module 2.2: Fundamentals – Quantization
- Module 2.3: Fundamentals – Convolution
- Module 2.4: Fundamentals – Blocking
- Module 2.5: Fundamentals – Fourier Transform
- Module 2.6: Fundamentals – Alternative Frequency Transforms
- Module 2.7: Fundamentals – Correlation
chapter 3: instantaneous features
- Module 3.0: Feature Intro and Pre-Processing
- Module 3.1: Statistical Features
- Module 3.2: Spectral Features
- Module 3.3: Additional Features
- Module 3.4: Feature Post-Processing
- Module 3.5: Feature Dimensionality Reduction
chapter 4: intensity & loudness
- Module 4.0: Intensity and Loudness
chapter 5: tonal analysis
- Module 5.0: Pitch Perception
- Module 5.1: Pitch in Music
- Module 5.2: Monophonic Fundamental Frequency Detection
- Module 5.3: Instantaneous Frequency
- Module 5.4: Polyphonic Fundamental Frequency Detection
- Module 5.5: Polyphonic Pitch Tracking with NMF
- Module 5.6: Tuning Frequency Estimation
- Module 5.7: Musical Key Recognition
- Module 5.8: Chord Detection
chapter 6: temporal analysis
- Module 6.0: Terminology for Temporal Events
- Module 6.1: Onset Detection
- Module 6.2: Tempo and Beat Detection
- Module 6.3: Bar length and Downbeat Detection
- Module 6.4: Rhythm Description
chapter 7: audio alignment
- Module 7.0: Dynamic Time Warping
- Module 7.1: Audio-to-Audio/Score Alignment
chapter 8: music genre classification, similarity, mood
- Module 8.0: Classifiers
- Module 8.1: Music Genre Classification
- Module 8.2: Music Similarity
- Module 8.3: Mood Recognition
chapter 9: audio fingerprinting
- Module 9.0: Audio Fingerprinting
get the book
@ IEEE@ Wiley
get the code
matlabpython
C++